SUMMARY REPORT
194 ASPEN STREET (FORMERLY 381 ASPEN STREET)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095 SUMMARY REPORT
194 ASPEN STREET (FORMERLY 381 ASPEN STREET)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016

CTO WE52

JUNE 2021

Table of Contents

INTRODUC	TION	1
SAMPLING	ACTIVITIES AND RESULTS	3
PROPERTY	STATUS	4
REFERENC	ES	4
1	Table Laboratory Analytical Results - Soil	
	Appendices	
dix B	Multi-Media Selection Process for LBMH UST Assesment Report	
dix C	Regulatory Correspondence	
	BACKGROUI UST REMO SAMPLING UST REMO SOIL ANALY	1 Laboratory Analytical Results - Soil Appendices Idix A Multi-Media Selection Process for LBMH Idix B UST Assesment Report

List of Acronyms

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CTO Contract Task Order

COPC constituents of potential concern

IDIQ Indefinite Delivery, Indefinite Quantity

IGWA Initial Groundwater Assessment

JV Joint Venture

LBMH Laurel Bay Military Housing MCAS Marine Corps Air Station

NAVFAC Mid-Lant Naval Facilities Engineering Command Mid-Atlantic

NFA No Further Action

PAH polynuclear aromatic hydrocarbon

QAPP Quality Assurance Program Plan

RBSL risk-based screening level

SCDHEC South Carolina Department of Health and Environmental Control

Site LBMH area at MCAS Beaufort, South Carolina

UST underground storage tank

VISL vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 194 Aspen Street (Formerly 381 Aspen Street). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 194 Aspen Street (Formerly 381 Aspen Street). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 381 Aspen Street* (MCAS Beaufort, 2011). The UST Assessment Report is provided in Appendix B.

2.1 UST Removal and Soil Sampling

On June 15, 2011, a single 280 gallon heating oil UST was removed from the landscaped area adjacent to the driveway at 194 Aspen Street (Formerly 381 Aspen Street). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 5'10" bgs and a single soil sample was collected from that depth. The

sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 194 Aspen Street (Formerly 381 Aspen Street) were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil, SCDHEC made the determination that NFA was required for 194 Aspen Street (Formerly 381 Aspen Street). This NFA determination was obtained in a letter dated July 1, 2015. SCDHEC's NFA letter is provided in Appendix C.

4.0 REFERENCES

Marine Corps Air Station Beaufort, 2011. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 381 Aspen Street, Laurel Bay Military Housing Area, September 2011.

South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.

Table

Table 1

Laboratory Analytical Results - Soil 194 Aspen Street (Formerly 381 Aspen Street) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Results Sample Collected 06/15/11						
Volatile Organic Compounds Analyzed by EPA Method 8260B (mg/kg)								
Benzene	0.003	ND						
Ethylbenzene	1.15	ND						
Naphthalene	0.036	0.00833						
Toluene	0.627	ND						
Xylenes, Total	13.01	0.00273						
Semivolatile Organic Compounds Anal	Semivolatile Organic Compounds Analyzed by EPA Method 8270D (mg/kg)							
Benzo(a)anthracene	0.66	ND						
Benzo(b)fluoranthene	0.66	ND						
Benzo(k)fluoranthene	0.66	ND						
Chrysene	0.66	0.0478						
Dibenz(a,h)anthracene	0.66	ND						

Notes:

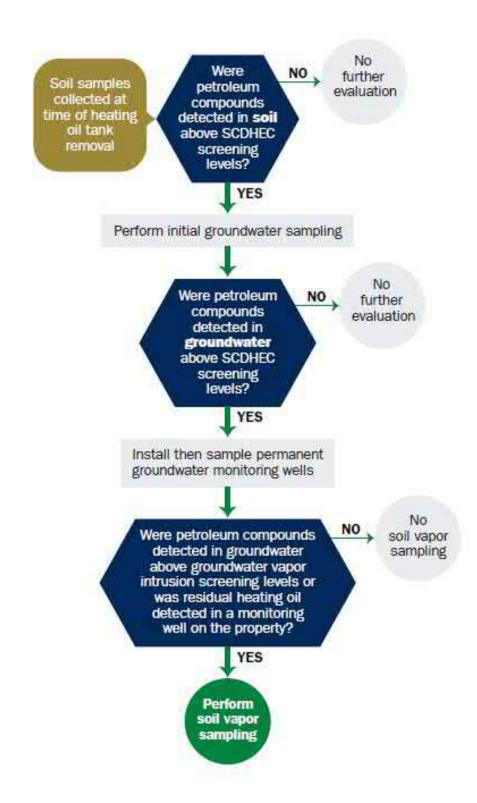
⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 and 3.1 (SCDHEC, May 2015 and SCDHEC, February 2016) and the Underground Storage Tank Assessment Guidelines (SCDHEC, February 2006).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligram per kilogram


ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC)

Underground Storage Tank (UST) Assessment Report

Date Received

State Use Only

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

MCAS Beaufort, Co	ommanding Officer Attn: N	REAO (Craig Ehde)
Owner Name (Corporation	n, Individual, Public Agency, Other)	
P.O. Box 55001 Mailing Address		
Beaufort,	South Carolina	29904-5001
City	State	Zip Code
843	228-7317	Craig Ehde
Area Code	Telephone Number	Contact Person

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. #				
Laurel Bay Milit	ary Housing Area, Ma	arine Corps	Air Station,	Beaufort, SC
Facility Name or Compar	y Site Identifier			
381 Aspen Street Street Address or State Ro	c, Laurel Bay Milita oad (as applicable)	ary Housing	Area	
Beaufort,	Beaufort			
City	County			

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement
The petroleum release reported to DHEC on at Permit ID Number may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.
Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES NO (check one)
If you answered YES to the above question, please complete the following information:
My policy provider is: The policy deductible is: The policy limit is:
If you have this type of insurance, please include a copy of the policy with this report.
IV. REQUEST FOR SUPERB FUNDING
I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)
V. CERTIFICATION (To be signed by the UST owner)
I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.
Name (Type or print.)
Signature
To be completed by Notary Public:
Sworn before me this day of, 20
(Name)
Notary Public for the state of Please affix State seal if you are commissioned outside South Carolina

Heating oil 280 gal Late 1950s Steel Unknown 5'10" No Removed				
Late 1950s Steel Unknown 5'10" No				
Steel Unknown 5'10" No				
Unknown 5'10" No				
5'10" No				
No No				
No				
Removed				
(
6/15/11				
Yes				
Yes				
-	•		ycled.	See
•			`	
Jacobana dir			<u> </u>	
	Yes Yes ground (attach disground, clea	Yes Yes ground (attach disposal maground, cleaned and arter) s, or wastewaters removed to the tank and disposal maground arter.	Yes Yes ground (attach disposal manifests) ground, cleaned and rec s, or wastewaters removed from the m the tank and disposed scribe the location and extent for ea	Yes

VII. PIPING INFORMATION

	381Aspen			
	Steel			
Construction Material(ex. Steel, FRP)	& Copper			<u> </u>
Distance from UST to Dispenser	N/A			
Number of Dispensers	N/A			
Type of System Pressure or Suction	Suction			
Was Piping Removed from the Ground? Y/N	No			
Visible Corrosion or Pitting Y/N	Yes			
Visible Holes Y/N	No			
Age	Late 1950s			
If any corrosion, pitting, or holes were observed, de Corrosion and pitting were found				_
pipe. Copper supply and return li			50001 (
VIII. BRIEF SITE DESCRI The USTs at the residences are con			l steel	
and formerly contained fuel oil for				
installed in the late 1950s and la	ast used in the	e mid 198	0s.	

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		Х	
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, mild, etc.)		Х	
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		х	
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:		Х	
E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness.		Х	

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

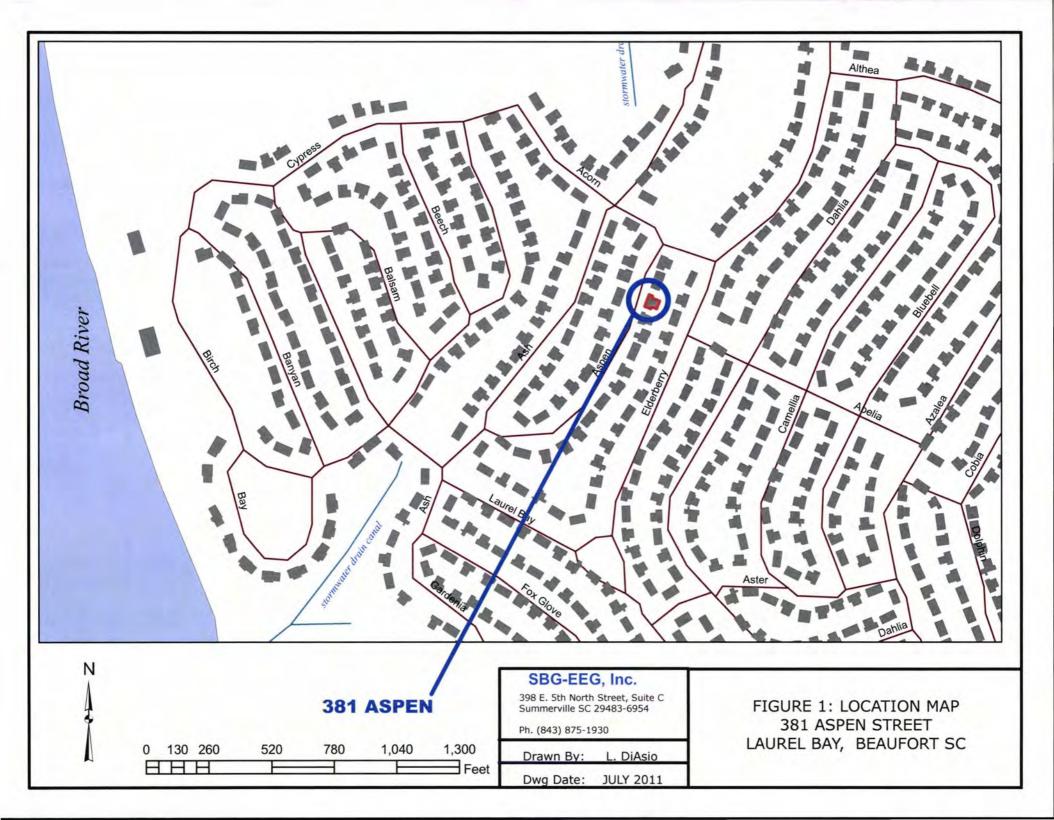
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA#
381 Aspen	Excav at fill end	Soil	Sandy	5'10"	6/15/11 1230 hrs	P. Shaw	
This pen	1111 0110	5011			1100 1110		
8							
9							
10							
11							
12	-						
13			*****		·		
14							
15							"
16							·
17							
18							
19							
20							

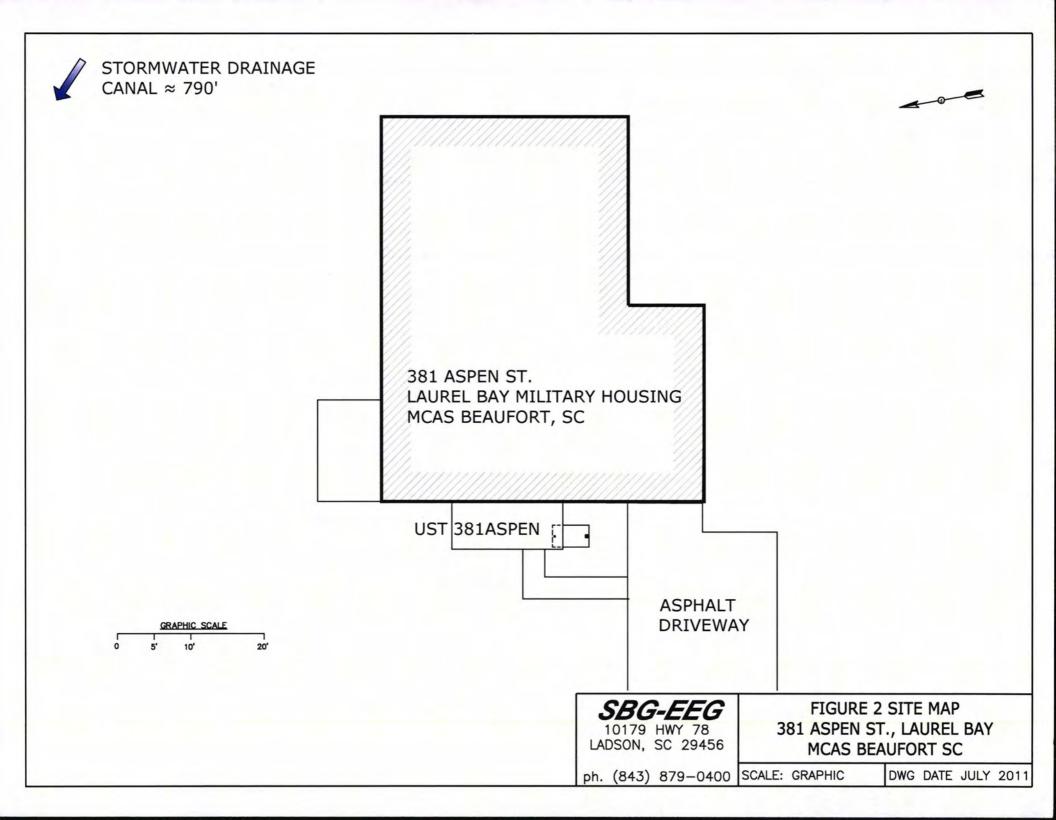
^{* =} Depth Below the Surrounding Land Surface

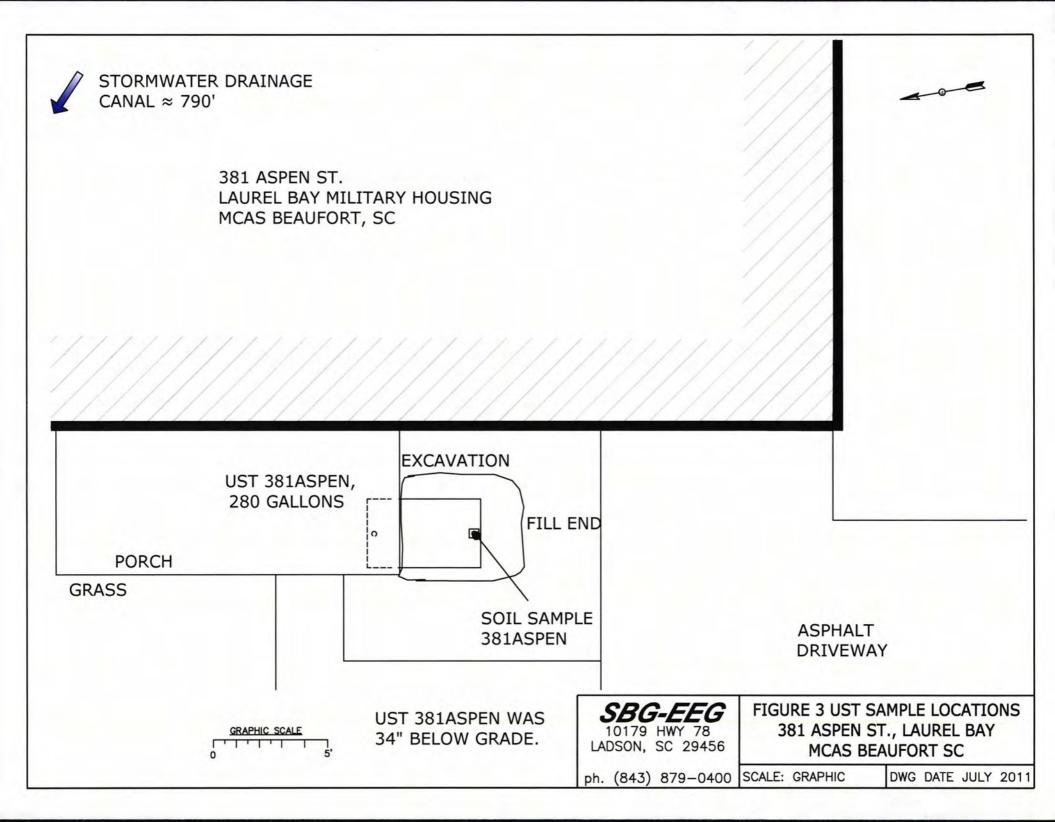
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280
and SC DHEC Assessment Guidelines. Sample containers were prepared by the
testing laboratory. The grab method was utilized to fill the sample
containers leaving as little head space as possible and immediately
capped. Soil samples were extracted from area below tank. The
samples were marked, logged, and immediately placed in a sample cooler
packed with ice to maintain an approximate temperature of 4 degrees
Centigrade. Tools were thoroughly cleaned and decontaminated with
the seven step decon process after each use. The samples remained in
custody of SBG-EEG, Inc. until they were transferred to Test America
Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


Yes No A. Are there any lakes, ponds, streams, or wetlands located within *X 1000 feet of the UST system? *~ 790' to drainage canal If yes, indicate type of receptor, distance, and direction on site map. B. Are there any public, private, or irrigation water supply wells within X 1000 feet of the UST system? If yes, indicate type of well, distance, and direction on site map. C. Are there any underground structures (e.g., basements) Х Located within 100 feet of the UST system? If yes, indicate type of structure, distance, and direction on site map. D. Are there any underground utilities (e.g., telephone, electricity, gas, * X water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the *Sewer, water, electricity, contamination? cable, & fiber optic If yes, indicate the type of utility, distance, and direction on the site map. E. Has contaminated soil been identified at a depth less than 3 feet Х below land surface in an area that is not capped by asphalt or concrete? If yes, indicate the area of contaminated soil on the site map.


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 381Aspen.

Picture 2: UST 381Aspen excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

	r	· · · · · · · · · · · · · · · · · · ·		<u>r </u>	 T
CoC UST	381Aspen				
Benzene	ND				
Toluene	ND				
Ethylbenzene	ND				
Xylenes	0.00273 mg/k	g			
Naphthalene	0.00833 mg/k	g			
Benzo (a) anthracene	ND				
Benzo (b) fluoranthene	ND				
Benzo (k) fluoranthene	ND				
Chrysene	0.0478 mg/kg				
Dibenz (a, h) anthracene	ND				
TPH (EPA 3550)					
			- /		
СоС					
Benzene					
Toluene					
Ethylbenzene					
Xylenes					
Naphthalene					
Benzo (a) anthracene					
Benzo (b) fluoranthene					
Benzo (k) fluoranthene					
Chrysene					
Dibenz (a, h) anthracene					
TPH (EPA 3550)					

SUMMARY OF ANALYSIS RESULTS (cont'd)
Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
MTBE	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Road Nashville, TN 37204 Tel: 800-765-0980

TestAmerica Job ID: NUF3059

Client Project/Site: [none]

Client Project Description: Laurel Bay Housing Project

For:

EEG - Small Business Group, Inc. (2449) 10179 Highway 78 Ladson, SC 29456

Attn: Tom McElwee

Authorized for release by: 07/05/2011 06:16:21 PM

Ken A. Hayes

Senior Project Manager

ken.hayes@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 20 07/05/2011

Project/Site: [none]

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	
Definitions	
Client Sample Results	
QC Sample Results	7
QC Association	1
Chronicle	1
Method Summary	1
Certification Summary	
Chain of Custody	1

- 5
- 6
- 7
- 9
- 10
- 100

Sample Summary

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF3059

2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
NUF3059-01	379 Aspen	Soil	06/14/11 12:00	06/18/11 09:10
NUF3059-02	381 Aspen	Soil	06/15/11 12:30	06/18/11 09:10

2

4

5

6

8

144

Definitions/Glossary

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF3059

Qualifiers

GCMS Volatiles

Qualifier	Qualifier Description	
J	Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).	
	Concentrations within this range are estimated.	
RL1	Reporting limit raised due to sample matrix effects.	
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.	

GCMS Semivolatiles

Qualifier	Qualifier Description
1	Internal Standard recovery was outside of method limits. Matrix interference was confirmed by reanalysis.
J	Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).
	Concentrations within this range are estimated.
MNR	No results were reported for the MS/MSD. The sample used for the MS/MSD required dilution due to the sample matrix. Because of this,
	the spike compounds were diluted below the detection limit.
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
₩	Listed under the "D" column to designate that the result is reported on a dry weight basis.
EPA	United States Environmental Protection Agency
ND	Not Detected above the reporting level.
MDL	Method Detection Limit
RL	Reporting Limit
RE, RE1 (etc.)	Indicates a Re-extraction or Reanalysis of the sample.
%R	Percent Recovery
RPD	Relative Percent Difference, a measure of the relative difference between two points.

Client Sample Results

Client: EEG - Small Business Group, Inc. (2449)

Client Sample ID: 379 Aspen

Date Collected: 06/14/11 12:00

Date Received: 06/18/11 09:10

Project/Site: [none]

TestAmerica Job ID: NUF3059

Lab Sample ID: NUF3059-01

Matrix: Soil

Percent Solids: 80.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00211	0.00116	mg/kg dry	Ø	06/14/11 12:00	06/27/11 18:14	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	94		67 - 138				06/14/11 12:00	06/27/11 18:14	1.00
Dibromofluoromethane	104		75 - 125				06/14/11 12:00	06/27/11 18:14	1.00
Toluene-d8	782	ZX	76 - 129				06/14/11 12:00	06/27/11 18:14	1.00
4-Bromofluorobenzene	203	ZX	67 - 147				06/14/11 12:00	06/27/11 18:14	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	0.675		0.123	0.0600	mg/kg dry	*	06/14/11 12:00	06/28/11 17:06	50.0
Naphthalene	6.09		0.306	0.104	mg/kg dry	**	06/14/11 12:00	06/28/11 17:06	50.0
Toluene	ND	RL1	0.123	0.0545	mg/kg dry	ø	06/14/11 12:00	06/28/11 17:06	50.0
Xylenes, total	5.55		0.306	0.116	mg/kg dry	Ø	06/14/11 12:00	06/28/11 17:06	50.0
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	86		67 - 138	06/14/11 12:00	06/28/11 17:06	50.0
Dibromofluoromethane	79		75 - 125	06/14/11 12:00	06/28/11 17:06	50.0
Toluene-d8	106		76 - 129	06/14/11 12:00	06/28/11 17:06	50.0
4-Bromofluorobenzene	132		67 - 147	06/14/11 12:00	06/28/11 17:06	50.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.414	0.0866	mg/kg dry	立	06/26/11 13:35	06/28/11 11:58	5.00
Acenaphthylene	ND		0.414	0.124	mg/kg dry	Ø	06/26/11 13:35	06/28/11 11:58	5.00
Anthracene	1.01		0.414	0.0556	mg/kg dry	章	06/26/11 13:35	06/28/11 11:58	5.00
Benzo (a) anthracene	0.476		0.414	0.0680	mg/kg dry	\$	06/26/11 13:35	06/28/11 11:58	5.00
Benzo (a) pyrene	0.206	J	0.414	0.0495	mg/kg dry	*	06/26/11 13:35	06/28/11 11:58	5.00
Benzo (b) fluoranthene	ND		0.414	0.235	mg/kg dry	章	06/26/11 13:35	06/28/11 11:58	5.00
Benzo (g,h,i) perylene	ND		0.414	0.0556	mg/kg dry	0	06/26/11 13:35	06/28/11 11:58	5.00
Benzo (k) fluoranthene	ND		0.414	0.229	mg/kg dry	章	06/26/11 13:35	06/28/11 11:58	5.00
Chrysene	0.587		0.414	0.192	mg/kg dry		06/26/11 13:35	06/28/11 11:58	5.00
Dibenz (a,h) anthracene	ND		0.414	0.0927	mg/kg dry		06/26/11 13:35	06/28/11 11:58	5.00
Fluoranthene	1.00		0.414	0.0680	mg/kg dry		06/26/11 13:35	06/28/11 11:58	5.00
Fluorene	4.11		0.414	0.124	mg/kg dry		06/26/11 13:35	06/28/11 11:58	5.00
Indeno (1,2,3-cd) pyrene	ND		0.414	0.192	mg/kg dry	Ø	06/26/11 13:35	06/28/11 11:58	5.00
Naphthalene	3.53		0.414	0.0866	mg/kg dry	325	06/26/11 13:35	06/28/11 11:58	5.00
Phenanthrene	9.76		0.414	0.0618	mg/kg dry	#	06/26/11 13:35	06/28/11 11:58	5.00
Pyrene	2.24		0.414	0.142	mg/kg dry	章	06/26/11 13:35	06/28/11 11:58	5.00
1-Methylnaphthalene	13.2		0.414	0.0742	mg/kg dry	Ø	06/26/11 13:35	06/28/11 11:58	5.00
2-Methylnaphthalene	20.2		0.414	0.130	mg/kg dry	Ø	06/26/11 13:35	06/28/11 11:58	5.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	78	-	18 - 120				06/26/11 13:35	06/28/11 11:58	5.00
2-Fluorobiphenyl	46		14 - 120				06/26/11 13:35	06/28/11 11:58	5.00
Nitrobenzene-d5	15	ZX	17 - 120				06/26/11 13:35	06/28/11 11:58	5.00

Method: SW-846 - General	Chemistry Paramete	rs							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	80.5		0.500	0.500	%		06/28/11 16:00	06/29/11 11:43	1.00

Client Sample Results

Client: EEG - Small Business Group, Inc. (2449)

Client Sample ID: 381 Aspen

Project/Site: [none]

Dibromofluoromethane

TestAmerica Job ID: NUF3059

Lab Sample ID: NUF3059-02

06/15/11 12:30 06/28/11 15:31

Matrix: Soil

1.00

Percent Solids: 83.4

Date Collected: 06/15/11 12	2:30				
Date Received: 06/18/11 09	:10				
Method: SW846 8260B - V	olatile Organic Comp	ounds by El	PA Method 82	60B - RE1	
Analyte	Result	Qualifier	RL	MDL	Unit
					Offic
Benzene	ND		0.00228	0.00126	Oine
Benzene Ethylbenzene	ND ND		0.00228 0.00228	0.00126 0.00112	mg/kg dry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00228	0.00126	mg/kg dry	\$	06/15/11 12:30	06/28/11 15:31	1.00
Ethylbenzene	ND		0.00228	0.00112	mg/kg dry	ø	06/15/11 12:30	06/28/11 15:31	1.00
Naphthalene	0.00833		0.00571	0.00194	mg/kg dry	Þ	06/15/11 12:30	06/28/11 15:31	1.00
Toluene	ND		0.00228	0.00102	mg/kg dry	¢	06/15/11 12:30	06/28/11 15:31	1.00
Xylenes, total	0.00273	J	0.00571	0.00217	mg/kg dry	ø	06/15/11 12:30	06/28/11 15:31	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	102		67 - 138				06/15/11 12:30	06/28/11 15:31	1.00

75 - 125

Toluene-d8	108		76 - 129				06/15/11 12:30	06/28/11 15:31	1.00
4-Bromofluorobenzene	126		67 - 147				06/15/11 12:30	06/28/11 15:31	1.00
** /	e u l		D4 0070D						
Method: SW846 8270D - Polya			PA 82/0D RL	MDI	Unit	_			DII 5
Analyte	777	Qualifier			27-037	- D	Prepared 06/26/11 13:35	Analyzed 06/28/11 01:45	Dil Fac
Acenaphthene	ND		0.0782	0.0163	mg/kg dry				
Acenaphthylene	ND		0.0782	0.0233			06/26/11 13:35	06/28/11 01:45	1.00
Anthracene	ND		0.0782	0.0105		***	06/26/11 13:35	06/28/11 01:45	1.00
Benzo (a) anthracene	ND		0.0782	0.0128		ø	06/26/11 13:35	06/28/11 01:45	1.00
Benzo (a) pyrene	ND		0.0782	0.00933		10	06/26/11 13:35	06/28/11 01:45	1.00
Benzo (b) fluoranthene	ND		0.0782	0.0443	mg/kg dry	0	06/26/11 13:35	06/28/11 01:45	1.00
Benzo (g,h,i) perylene	ND		0.0782	0.0105	mg/kg dry	¢	06/26/11 13:35	06/28/11 01:45	1.00
Benzo (k) fluoranthene	ND		0.0782	0.0432	mg/kg dry	*	06/26/11 13:35	06/28/11 01:45	1.00
Chrysene	0.0478	J	0.0782	0.0362	mg/kg dry	Ø	06/26/11 13:35	06/28/11 01:45	1.00
Dibenz (a,h) anthracene	ND		0.0782	0.0175	mg/kg dry	Ø	06/26/11 13:35	06/28/11 01:45	1.00
Fluoranthene	0.0482	J	0.0782	0.0128	mg/kg dry		06/26/11 13:35	06/28/11 01:45	1.00
Fluorene	ND		0.0782	0.0233	mg/kg dry	Ø	06/26/11 13:35	06/28/11 01:45	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0782	0.0362	mg/kg dry	口口	06/26/11 13:35	06/28/11 01:45	1.00
Naphthalene	ND		0.0782	0.0163	mg/kg dry	10	06/26/11 13:35	06/28/11 01:45	1.00
Phenanthrene	ND		0.0782	0.0117	mg/kg dry	ø	06/26/11 13:35	06/28/11 01:45	1.00
Pyrene	0.0863		0.0782	0.0268	mg/kg dry	30	06/26/11 13:35	06/28/11 01:45	1.00
1-Methylnaphthalene	ND		0.0782	0.0140	mg/kg dry	100	06/26/11 13:35	06/28/11 01:45	1.00
2-Methylnaphthalene	ND		0.0782	0.0245	mg/kg dry	Ø	06/26/11 13:35	06/28/11 01:45	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	66		18 - 120				06/26/11 13:35	06/28/11 01:45	1.00
2-Fluorobiphenyl	49		14 - 120				06/26/11 13:35	06/28/11 01:45	1.00
Nitrobenzene-d5	47		17 - 120				06/26/11 13:35	06/28/11 01:45	1.00
Method: SW-846 - General Ch	emistry Paramete	ers							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	83.4		0.500	0.500	%		06/28/11 16:00	06/29/11 11:43	1.00

QC Sample Results

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF3059

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

Lab Sample ID: 11F6770-BLK1

Matrix: Soil

Analysis Batch: U011504

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 11F6770_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Benzene	ND		0.00200	0.00110	mg/kg wet		06/27/11 10:14	06/27/11 12:51	1.00
Ethylbenzene	ND		0.00200	0.000980	mg/kg wet		06/27/11 10:14	06/27/11 12:51	1.00
Naphthalene	ND		0.00500	0.00170	mg/kg wet		06/27/11 10:14	06/27/11 12:51	1.00
Toluene	ND		0.00200	0.000890	mg/kg wet		06/27/11 10:14	06/27/11 12:51	1.00
Xylenes, total	ND		0.00500	0.00190	mg/kg wet		06/27/11 10:14	06/27/11 12:51	1.00

Blank Blank

	Diam	Diam				
Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	112		67 - 138	06/27/11 10:14	06/27/11 12:51	1.00
Dibromofluoromethane	111		75 - 125	06/27/11 10:14	06/27/11 12:51	1.00
Toluene-d8	102		76 - 129	06/27/11 10:14	06/27/11 12:51	1.00
4-Bromofluorobenzene	107		67 - 147	06/27/11 10:14	06/27/11 12:51	1.00

Lab Sample ID: 11F6770-BLK2

Matrix: Soil

Analysis Batch: U011504

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 11F6770_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0550	mg/kg wet		06/27/11 10:14	06/27/11 13:23	50.0
Ethylbenzene	ND		0.100	0.0490	mg/kg wet		06/27/11 10:14	06/27/11 13:23	50.0
Naphthalene	ND		0.250	0.0850	mg/kg wet		06/27/11 10:14	06/27/11 13:23	50.0
Toluene	ND		0.100	0.0445	mg/kg wet		06/27/11 10:14	06/27/11 13:23	50.0
Xylenes, total	ND		0.250	0.0950	mg/kg wet		06/27/11 10:14	06/27/11 13:23	50.0

Blank Blank

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	95		67 - 138	06/27/11 10:14	06/27/11 13:23	50.0
Dibromofluoromethane	89		75 - 125	06/27/11 10:14	06/27/11 13:23	50.0
Toluene-d8	103		76 - 129	06/27/11 10:14	06/27/11 13:23	50.0
4-Bromofluorobenzene	105		67 - 147	06/27/11 10:14	06/27/11 13:23	50.0

Lab Sample ID: 11F6770-BS1

Matrix: Soil

Analysis Batch: U011504

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 11F6770_P

Spike	LCS	LCS				% Rec.	
Added	Result	Qualifier	Unit	D	% Rec	Limits	
50.0	51.6		ug/kg		103	78 - 126	
50.0	60.6		ug/kg		121	79 - 130	
50.0	60.5		ug/kg		121	72 - 150	
50.0	57.1		ug/kg		114	76 - 126	
150	181		ug/kg		120	80 - 130	
	50.0 50.0 50.0 50.0	Added Result 50.0 51.6 50.0 60.6 50.0 60.5 50.0 57.1	Added Result Qualifier 50.0 51.6 50.0 60.6 50.0 60.5 50.0 57.1	Added Result Qualifier Unit 50.0 51.6 ug/kg 50.0 60.6 ug/kg 50.0 60.5 ug/kg 50.0 57.1 ug/kg	Added Result Qualifier Unit D 50.0 51.6 ug/kg 50.0 60.6 ug/kg 50.0 60.5 ug/kg 50.0 57.1 ug/kg	Added Result Qualifier Unit D % Rec 50.0 51.6 ug/kg 103 50.0 60.6 ug/kg 121 50.0 60.5 ug/kg 121 50.0 57.1 ug/kg 114	Added Result Qualifier Unit D % Rec Limits 50.0 51.6 ug/kg 103 78 - 126 50.0 60.6 ug/kg 121 79 - 130 50.0 60.5 ug/kg 121 72 - 150 50.0 57.1 ug/kg 114 76 - 126

Page 7 of 20

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	91		67 - 138
Dibromofluoromethane	96		75 - 125
Toluene-d8	102		76 - 129
4-Bromofluorobenzene	107		67 - 147

Prep Type: Total

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11F6770-BSD1 Client Sample ID: Lab Control Sample Dup Matrix: Soil

Analysis Batch: 11011504

Analysis Batch: 0011504					Prep Batch: 11F6//U_P					
	Spike	LCS Dup	LCS Dup				% Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit	
Benzene	50.0	60.7		ug/kg		121	78 - 126	16	50	
Ethylbenzene	50.0	59.7		ug/kg		119	79 - 130	1	50	
Naphthalene	50.0	57.9		ug/kg		116	72 - 150	4	50	
Toluene	50.0	56.7		ug/kg		113	76 - 126	0.7	50	
Xylenes, total	150	179		ug/kg		119	80 - 130	1	50	

	LCS Dup	LCS Dup	
Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	109		67 - 138
Dibromofluoromethane	113		75 - 125
Toluene-d8	103		76 - 129
4-Bromofluorobenzene	106		67 - 147

Lab Sample ID: 11F6770-MS1

Matrix: Soil

Analysis Batch: U011504

Client Sample ID: Matrix Spike Prep Type: Total

Prep Batch: 11F6770_P

The state of the s	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			% Rec.	-
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Benzene	0.00265		0.0482	0.0499		mg/kg dry	Ø	98	42 - 141	
Ethylbenzene	0.00285		0.0482	0.0575		mg/kg dry	ø	113	21 - 165	
Naphthalene	ND		0.0482	0.0481		mg/kg dry	¢	100	10 - 160	
Toluene	0.00833		0.0482	0.0608		mg/kg dry	¢	109	45 - 145	
Xylenes, total	0.00714		0.145	0.169		mg/kg dry	Ö	112	31 - 159	

	watrix Spike	Matrix Spike	
Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	91		67 - 138
Dibromofluoromethane	93		75 - 125
Toluene-d8	106		76 - 129
4-Bromofluorobenzene	110		67 - 147

Lab Sample ID: 11F6770-MSD1

Matrix: Soil

Xylenes, total

Analysis Batch: U011504

Client Sample ID: Matrix Spike Duplicate

31 - 159

Prep Type: Total Prep Batch: 11F6770_P

Spike Matrix Spike Dup Matrix Spike Dur Sample Sample % Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D % Rec Limits RPD Limit Benzene 0.00265 0.0507 0.0649 mg/kg dry 亞 123 42 - 141 26 50 Ethylbenzene 0.00285 0.0507 0.0647 mg/kg dry 122 21 - 165 12 50 Naphthalene ND 0.0507 0.0568 mg/kg dry 10 - 160 112 17 50 T. Toluene 0.00833 0.0507 0.0737 129 45 - 145 mg/kg dry 19 50

0.190

mg/kg dry

Q.

0.152

Matrix Spike Dup Matrix Spike Dup

0.00714

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	110		67 - 138
Dibromofluoromethane	111		75 - 125
Toluene-d8	111		76 - 129
4-Bromofluorobenzene	123		67 - 147

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11F7149-BLK1

Matrix: Soil

Analysis Batch: U011573

Client Sample ID: Method Blank
Prep Type: Total
Prep Batch: 11F7149_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.00110	mg/kg wet		06/28/11 11:50	06/28/11 14:28	1.00
Ethylbenzene	ND		0.00200	0.000980	mg/kg wet		06/28/11 11:50	06/28/11 14:28	1.00
Naphthalene	ND		0.00500	0.00170	mg/kg wet		06/28/11 11:50	06/28/11 14:28	1.00
Toluene	ND		0.00200	0.000890	mg/kg wet		06/28/11 11:50	06/28/11 14:28	1.00
Xylenes, total	ND		0.00500	0.00190	mg/kg wet		06/28/11 11:50	06/28/11 14:28	1.00

	Blank	Blank				
Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	97		67 - 138	06/28/11 11:50	06/28/11 14:28	1.00
Dibromofluoromethane	96		75 - 125	06/28/11 11:50	06/28/11 14:28	1.00
Toluene-d8	103		76 - 129	06/28/11 11:50	06/28/11 14:28	1.00
4-Bromofluorobenzene	110		67 - 147	06/28/11 11:50	06/28/11 14:28	1.00

Lab Sample ID: 11F7149-BLK2

Matrix: Soil

Analysis Batch: U011573

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 11F7149_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0550	mg/kg wet		06/28/11 11:50	06/28/11 15:00	50.0
Ethylbenzene	ND		0.100	0.0490	mg/kg wet		06/28/11 11:50	06/28/11 15:00	50.0
Naphthalene	ND		0.250	0.0850	mg/kg wet		06/28/11 11:50	06/28/11 15:00	50.0
Toluene	ND		0.100	0.0445	mg/kg wet		06/28/11 11:50	06/28/11 15:00	50.0
Xylenes, total	ND		0.250	0.0950	mg/kg wet		06/28/11 11:50	06/28/11 15:00	50.0

Dialik L	DIAIIK				
% Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
94		67 - 138	06/28/11 11:50	06/28/11 15:00	50.0
90		75 - 125	06/28/11 11:50	06/28/11 15:00	50.0
103		76 - 129	06/28/11 11:50	06/28/11 15:00	50.0
108		67 - 147	06/28/11 11:50	06/28/11 15:00	50.0
	% Recovery 94 90 103	90 103	% Recovery Qualifier Limits 94 67 - 138 90 75 - 125 103 76 - 129	% Recovery Qualifier Limits Prepared 94 67 - 138 06/28/11 11:50 90 75 - 125 06/28/11 11:50 103 76 - 129 06/28/11 11:50	% Recovery Qualifier Limits Prepared Analyzed 94 67 - 138 06/28/11 11:50 06/28/11 11:50 90 75 - 125 06/28/11 11:50 06/28/11 15:00 103 76 - 129 06/28/11 11:50 06/28/11 15:00

Lab Sample ID: 11F7149-BS1

Matrix: Soil

Analysis Batch: U011573

Client Sample ID: Lab Control Sample
Prep Type: Total
Prep Batch: 11F7149_P

	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Benzene	50.0	53.0		ug/kg		106	78 - 126
Ethylbenzene	50.0	58.0		ug/kg		116	79 - 130
Naphthalene	50.0	57.3		ug/kg		115	72 - 150
Toluene	50.0	57.0		ug/kg		114	76 - 126
Xylenes, total	150	178		ug/kg		119	80 - 130

LCS	LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	97		67 - 138
Dibromofluoromethane	100		75 - 125
Toluene-d8	102		76 - 129
4-Bromofluorobenzene	106		67 - 147

TestAmerica Nashville 07/05/2011

Client Sample ID: 379 Aspen

45 - 145

31 - 159

Client Sample ID: 379 Aspen

Prep Type: Total

118

125

mg/kg dry

mg/kg dry

Prep Type: Total

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11F7149-BSD1 Client						t Sample ID: Lab Control Sample Dup				
Matrix: Soil							Pre	p Type:	Total	
Analysis Batch: U011573						1	Prep Batch: 11F7149_P			
	Spike	LCS Dup	LCS Dup				% Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit	
Benzene	50.0	52.4		ug/kg		105	78 - 126	1	50	
Ethylbenzene	50.0	60.2		ug/kg		120	79 - 130	4	50	
Naphthalene	50.0	58.9		ug/kg		118	72 - 150	3	50	
Toluene	50.0	57.8		ug/kg		116	76 - 126	1	50	
Xylenes, total	150	179		ug/kg		120	80 - 130	0.8	50	

	LCS Dup	LCS Dup	
Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	93		67 - 138
Dibromofluoromethane	98		75 - 125
Toluene-d8	105		76 - 129
4-Bromofluorobenzene	108		67 - 147

Lab Sample ID: 11F7149-MS1 Matrix: Soil

Analyte Benzene Ethylbenzene Naphthalene

Toluene

Xylenes, total

Analysis Batch: U

U011573									Prep Batch:	11F7149_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			% Rec.	
	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
	ND		61.3	67.0		mg/kg dry	***	109	42 - 141	
	ND		61.3	77.1		mg/kg dry		126	21 - 165	
	8.15		61.3	76.4		mg/kg dry	*	111	10 - 160	

72.5

237

	Matrix Spike	Matrix Spike	
Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	90		67 - 138
Dibromofluoromethane	95		75 - 125
Toluene-d8	103		76 - 129
4-Bromofluorobenzene	106		67 - 147

ND

7.13

Lab Sample ID: 11F7149-MSD1

Matrix: Soil

								Prep Batch	1: 11F7	149_P
Sample	Sample	Spike	Matrix Spike Dup	Matrix Spi	ke Đuţ			% Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
ND		61.3	63.3		mg/kg dry	Þ	103	42 - 141	6	50
ND		61.3	76.0		mg/kg dry	Ø	124	21 - 165	2	50
8.15		61.3	79.7		mg/kg dry	\$	117	10 - 160	4	50
ND		61.3	69.7		mg/kg dry	*	114	45 - 145	4	50
7.13		184	225		mg/kg dry	*	119	31 - 159	5	50
	Result ND ND 8.15 ND	ND 8.15 ND	Result Qualifier Added ND 61.3 ND 61.3 8.15 61.3 ND 61.3	Result Qualifier Added Result ND 61.3 63.3 ND 61.3 76.0 8.15 61.3 79.7 ND 61.3 69.7	Result ND Qualifier Added 61.3 Result 63.3 ND 61.3 76.0 8.15 61.3 79.7 ND 61.3 69.7	Result ND Qualifier Added Added Added Result Gualifier Qualifier Unit Unit Mg/kg dry ND 61.3 63.3 mg/kg dry 8.15 61.3 79.7 mg/kg dry ND 61.3 69.7 mg/kg dry	Result Qualifier Added Result Qualifier Unit D ND 61.3 63.3 mg/kg dry \$\overline{\sigma}\$ ND 61.3 76.0 mg/kg dry \$\overline{\sigma}\$ 8.15 61.3 79.7 mg/kg dry \$\overline{\sigma}\$ ND 61.3 69.7 mg/kg dry \$\overline{\sigma}\$	Sample Sample Spike // latrix Spike Dup Matrix Spike Dup Result Qualifier Added Result Qualifier Unit D % Rec ND 61.3 63.3 mg/kg dry © 103 ND 61.3 76.0 mg/kg dry © 124 8.15 61.3 79.7 mg/kg dry © 117 ND 61.3 69.7 mg/kg dry © 114	Sample Sample Spike Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup % Rec. Result Qualifier Unit D % Rec. Limits ND 61.3 63.3 mg/kg dry □ 103 42 - 141 ND 61.3 76.0 mg/kg dry □ 124 21 - 165 8.15 61.3 79.7 mg/kg dry □ 117 10 - 160 ND 61.3 69.7 mg/kg dry □ 114 45 - 145	Result ND Qualifier Added Added Added Sesult Qualifier Qualifier Unit Unit Major Model D % Rec Major Model Limits Major Model RPD ND 61.3 76.0 mg/kg dry Model 124 21 - 165 2 8.15 61.3 79.7 mg/kg dry Model 117 10 - 160 4 ND 61.3 69.7 mg/kg dry Model 114 45 - 145 4

61.3

Matrix	Spike Dup	Matrix Spike Dup	

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	85		67 - 138
Dibromofluoromethane	89		75 - 125
Toluene-d8	103		76 - 129
4-Bromofluorobenzene	112		67 - 147

Project/Site: [none]

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Lab Sample ID: 11F5035-BLK1 Client Sample ID: Method Blank Matrix: Soil Prep Type: Total Analysis Batch: 11F5035 Prep Batch: 11F5035_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0140	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Acenaphthylene	ND		0.0670	0.0200	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Anthracene	ND		0.0670	0.00900	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Benzo (a) anthracene	ND		0.0670	0.0110	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Benzo (a) pyrene	ND		0.0670	0.00800	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Benzo (b) fluoranthene	ND		0.0670	0.0380	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Benzo (g,h,i) perylene	ND		0.0670	0.00900	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Benzo (k) fluoranthene	ND		0.0670	0.0370	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Chrysene	ND		0.0670	0.0310	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Dibenz (a,h) anthracene	ND		0.0670	0.0150	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Fluoranthene	ND		0.0670	0.0110	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Fluorene	ND		0.0670	0.0200	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0670	0.0310	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Naphthalene	ND		0.0670	0.0140	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Phenanthrene	ND		0.0670	0.0100	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
Pyrene	ND		0.0670	0.0230	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
1-Methylnaphthalene	ND		0.0670	0.0120	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00
2-Methylnaphthalene	ND		0.0670	0.0210	mg/kg wet		06/26/11 13:35	06/28/11 00:04	1.00

	Blank Blank				
Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	88	18 - 120	06/26/11 13:35	06/28/11 00:04	1.00
2-Fluorobiphenyl	63	14 - 120	06/26/11 13:35	06/28/11 00:04	1.00
Nitrobenzene-d5	60	17 - 120	06/26/11 13:35	06/28/11 00:04	1.00

Lab Sample ID: 11F5035-BS1

Mat

Ana

b Sample ID: 11F5035-BS1			Client Sample ID: Lab Control Sample
trix: Soil			Prep Type: Total
alysis Batch: 11F5035			Prep Batch: 11F5035_P
	Spike	LCS LCS	% Rec.

	Бріке	LUS	LUS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Acenaphthene	1.67	1.26	MNR	mg/kg wet		76	49 - 120
Acenaphthylene	1.67	1.22	MNR	mg/kg wet		73	52 - 120
Anthracene	1.67	1.35	MNR	mg/kg wet		81	58 - 120
Benzo (a) anthracene	1.67	1.32	MNR	mg/kg wet		79	57 - 120
Benzo (a) pyrene	1.67	1.45	MNR	mg/kg wet		87	55 - 120
Benzo (b) fluoranthene	1.67	1.38	MNR	mg/kg wet		83	51 - 123
Benzo (g,h,i) perylene	1.67	1.17	MNR	mg/kg wet		70	49 - 121
Benzo (k) fluoranthene	1.67	1.20	MNR	mg/kg wet		72	42 - 129
Chrysene	1.67	1.29	MNR	mg/kg wet		77	55 - 120
Dibenz (a,h) anthracene	1.67	1.25	MNR	mg/kg wet		75	50 - 123
Fluoranthene	1.67	1.47	MNR	mg/kg wet		88	58 - 120
Fluorene	1.67	1.35	MNR	mg/kg wet		81	54 - 120
Indeno (1,2,3-cd) pyrene	1.67	1.25	MNR	mg/kg wet		75	50 - 122
Naphthalene	1.67	1.16	MNR	mg/kg wet		70	28 - 120
Phenanthrene	1.67	1.29	MNR	mg/kg wet		77	56 - 120
Pyrene	1.67	1.30	MNR	mg/kg wet		78	56 - 120
1-Methylnaphthalene	1.67	0.948		mg/kg wet		57	36 - 120
2-Methylnaphthalene	1.67	1.13		mg/kg wet		68	36 - 120

QC Sample Results

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF3059

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 11F5035_P

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 11F5035-BS1 Matrix: Soil

Analysis Batch: 11F5035

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
Terphenyl-d14	79		18 - 120
2-Fluorobiphenyl	59		14 - 120
Nitrobenzene-d5	53		17 - 120

Lab Sample ID: 11F5035-MS1

Matrix: Soil

Analysis Batch: 11F5035

Client Sample ID: 379 Aspen Prep Type: Total

Prep Batch: 11F5035_P

rep Batch: 11F5 % Rec.

rinary oro Batom Til occo										•
	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			% Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Acenaphthene	1.56		2.06	43.7	1	mg/kg dry	0	2050	42 - 120	
Acenaphthylene	0.933		2.06	50.9	1	mg/kg dry	***	2420	32 - 120	
Anthracene	7.61		2.06	14.1	1	mg/kg dry	尊	315	10 - 200	
Benzo (a) anthracene	0.467		2.06	2.17	1	mg/kg dry	ø	82	41 - 120	
Benzo (a) pyrene	0.199		2.06	1.89	1	mg/kg dry	Þ	82	33 - 121	
Benzo (b) fluoranthene	0.397		2.06	3.42	1	mg/kg dry	尊	147	26 - 137	
Benzo (g,h,i) perylene	0.0878		2.06	1.86	1	mg/kg dry	ø	86	21 - 124	
Benzo (k) fluoranthene	0.449		2.06	3.87	1	mg/kg dry	亞	166	14 - 140	
Chrysene	0.515		2.06	2.30	1	mg/kg dry	ø	87	28 - 123	
Dibenz (a,h) anthracene	ND		2.06	1.72	1	mg/kg dry	¢	83	25 - 127	
Fluoranthene	0.349		2.06	0.238	1	mg/kg dry	**	-5	38 - 120	
Fluorene	0.260		2.06	125	1	mg/kg dry	**	6060	41 - 120	
Indeno (1,2,3-cd) pyrene	0.0812		2.06	1.76	1	mg/kg dry	ø	81	25 - 123	
Naphthalene	4.63		2.06	5.35	1	mg/kg dry	Ø	35	25 - 120	
Phenanthrene	7.41		2.06	13.7	1	mg/kg dry	Ø.	307	37 - 120	
Pyrene	0.237		2.06	9.17	1	mg/kg dry	ø	433	29 - 125	
1-Methylnaphthalene	15.8		2.06	1.90		mg/kg dry	**	-672	19 - 120	
2-Methylnaphthalene	23.1		2.06	8.91		mg/kg dry	Ø	-690	11 - 120	

Matrix Spike Matrix Spike

Surrogate	% Recovery	Qualifier	Limits
Terphenyl-d14	154		18 - 120
2-Fluorobiphenyl	1320		14 - 120
Nitrobenzene-d5	30		17 - 120

Lab Sample ID: 11F5035-MSD1

Matrix: Soil

Analysis Batch: 11F5035

Client Sample ID: 379 Aspen

Prep Type: Total

Prep Batch: 11F5035_P

100	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spil	ke Dur			% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Acenaphthene	1.56		2.05	1.59		mg/kg dry	**	1	42 - 120	186	40
Acenaphthylene	0.933		2.05	1.13	1	mg/kg dry	章	10	32 - 120	191	30
Anthracene	7.61		2.05	8.71	1	mg/kg dry	*	54	10 - 200	47	50
Benzo (a) anthracene	0.467		2.05	1.81	1	mg/kg dry	章	65	41 - 120	18	30
Benzo (a) pyrene	0.199		2.05	1.66	t	mg/kg dry	ø	71	33 - 121	13	33
Benzo (b) fluoranthene	0.397		2.05	1.68	T.	mg/kg dry	Ø	63	26 - 137	68	42
Benzo (g,h,i) perylene	0.0878		2.05	1.60	t	mg/kg dry	0	74	21 - 124	15	32
Benzo (k) fluoranthene	0.449		2.05	1.91	1	mg/kg dry	***	71	14 - 140	68	39
Chrysene	0.515		2.05	1.92	1	mg/kg dry	**	69	28 - 123	18	34
Dibenz (a,h) anthracene	ND		2.05	1.52	1	mg/kg dry	Ø	74	25 - 127	12	31
Fluoranthene	0.349		2.05	0.229	1	mg/kg dry	Ø	-6	38 - 120	4	35

Page 12 of 20

TestAmerica Nashville

QC Sample Results

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF3059

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 11F5035-MSD1

Matrix: Soil

Analysis Batch: 11F5035

Client Sample ID: 379 Aspen

Prep Type: Total

Prep Batch: 11F5035_P

	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spi	ke Dur			% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Fluorene	0.260		2.05	0.298	1	mg/kg dry	0	2	41 - 120	199	37
Indeno (1,2,3-cd) pyrene	0.0812		2.05	1.57	1	mg/kg dry		73	25 - 123	11	32
Naphthalene	4.63		2.05	5.85	1	mg/kg dry		60	25 - 120	9	42
Phenanthrene	7.41		2.05	8.48	1	mg/kg dry	ø	52	37 - 120	47	32
Pyrene	0.237		2.05	0.272	1	mg/kg dry		2	29 - 125	188	40
1-Methylnaphthalene	15.8		2.05	16.5	1	mg/kg dry	\Diamond	34	19 - 120	159	45
2-Methylnaphthalene	23.1		2.05	23.7	L	mg/kg dry	Ø	25	11 - 120	91	50

Matrix Spike Dup Matrix Spike Dup

Surrogate	% Recovery	Qualifier	Limits
Terphenyl-d14	136		18 - 120
2-Fluorobiphenyl	65		14 - 120
Nitrobenzene-d5	57		17 - 120

% Recovery	Qualifier	Limits
136		18 - 120
65		14 - 120
57		17 - 120
	136 65	136 65

Method: SW-846 - General Chemistry Parameters

Client Sample ID: Duplicate Lab Sample ID: 11F6205-DUP1 Matrix: Soil Prep Type: Total

Prep Batch: 11F6205_P Analysis Batch: 11F6205

Duplicate Duplicate RPD Sample Sample Limit Analyte Result Qualifier RPD Result Qualifier Unit D % Dry Solids 91.8 11 20 82.2

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF3059

2

GCMS Volatiles

Analysis Batch: U011504

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F6770-BS1	Lab Control Sample	Total	Soil	SW846 8260B	11F6770_P
11F6770-BSD1	Lab Control Sample Dup	Total	Soil	SW846 8260B	11F6770_P
11F6770-BLK1	Method Blank	Total	Soil	SW846 8260B	11F6770_P
11F6770-BLK2	Method Blank	Total	Soil	SW846 8260B	11F6770_P
NUF3059-01	379 Aspen	Total	Soil	SW846 8260B	11F6770_P
11F6770-MS1	Matrix Spike	Total	Soil	SW846 8260B	11F6770_P
11F6770-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8260B	11F6770_P

Analysis Batch: U011573

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F7149-BS1	Lab Control Sample	Total	Soil	SW846 8260B	11F7149_P
11F7149-BSD1	Lab Control Sample Dup	Total	Soil	SW846 8260B	11F7149_P
11F7149-BLK1	Method Blank	Total	Soil	SW846 8260B	11F7149_P
11F7149-BLK2	Method Blank	Total	Soil	SW846 8260B	11F7149_P
NUF3059-02 - RE1	381 Aspen	Total	Soil	SW846 8260B	11F7149_P
NUF3059-01 - RE1	379 Aspen	Total	Soil	SW846 8260B	11F7149_P
11F7149-MS1	379 Aspen	Total	Soil	SW846 8260B	11F7149_P
11F7149-MSD1	379 Aspen	Total	Soil	SW846 8260B	11F7149_P

Prep Batch: 11F6770_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F6770-BS1	Lab Control Sample	Total	Soil	EPA 5035	
11F6770-BSD1	Lab Control Sample Dup	Total	Soil	EPA 5035	
11F6770-BLK1	Method Blank	Total	Soil	EPA 5035	
11F6770-BLK2	Method Blank	Total	Soil	EPA 5035	
NUF3059-01	379 Aspen	Total	Soil	EPA 5035	
11F6770-MS1	Matrix Spike	Total	Soil	EPA 5035	
11F6770-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 5035	

Prep Batch: 11F7149_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F7149-BS1	Lab Control Sample	Total	Soil	EPA 5035	
11F7149-BSD1	Lab Control Sample Dup	Total	Soil	EPA 5035	
11F7149-BLK1	Method Blank	Total	Soil	EPA 5035	
11F7149-BLK2	Method Blank	Total	Soil	EPA 5035	
NUF3059-02 - RE1	381 Aspen	Total	Soil	EPA 5035	
NUF3059-01 - RE1	379 Aspen	Total	Soil	EPA 5035	
11F7149-MS1	379 Aspen	Total	Soil	EPA 5035	
11F7149-MSD1	379 Aspen	Total	Soil	EPA 5035	

GCMS Semivolatiles

Analysis Batch: 11F5035

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F5035-BLK1	Method Blank	Total	Soil	SW846 8270D	11F5035_P
11F5035-BS1	Lab Control Sample	Total	Soil	SW846 8270D	11F5035_P
11F5035-MS1	379 Aspen	Total	Soil	SW846 8270D	11F5035_P
11F5035-MSD1	379 Aspen	Total	Soil	SW846 8270D	11F5035_P
NUF3059-02	381 Aspen	Total	Soil	SW846 8270D	11F5035_P
NUF3059-01 - RE1	379 Aspen	Total	Soil	SW846 8270D	11F5035_P

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF3059

GCMS Semivolatiles (Continued)

Prep Batch: 11F5035_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F5035-BLK1	Method Blank	Total	Soil	EPA 3550C	
11F5035-BS1	Lab Control Sample	Total	Soil	EPA 3550C	
11F5035-MS1	379 Aspen	Total	Soil	EPA 3550C	
11F5035-MSD1	379 Aspen	Total	Soil	EPA 3550C	
NUF3059-02	381 Aspen	Total	Soil	EPA 3550C	
NUF3059-01 - RE1	379 Aspen	Total	Soil	EPA 3550C	

Extractions

Analysis Batch: 11F6205

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F6205-DUP1	Duplicate	Total	Soil	SW-846	11F6205_P
NUF3059-01	379 Aspen	Total	Soil	SW-846	11F6205_P
NUF3059-02	381 Aspen	Total	Soil	SW-846	11F6205_P

Prep Batch: 11F6205_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F6205-DUP1	Duplicate	Total	Soil	% Solids	
NUF3059-01	379 Aspen	Total	Soil	% Solids	
NUF3059-02	381 Aspen	Total	Soil	% Solids	

Analysis Batch: 11F5035

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
NUF3059-01	379 Aspen	Total	Soil	SW846 8270D	

2

4

5

7

8

9

Lab Chronicle

Client: EEG - Small Business Group, Inc. (2449)

Client Sample ID: 379 Aspen

Date Collected: 06/14/11 12:00

Date Received: 06/18/11 09:10

Project/Site: [none]

TestAmerica Job ID: NUF3059

Lab Sample ID: NUF3059-01

Matrix: Soil

Percent Solids: 80.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		0.847	11F6770_P	06/14/11 12:00	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	U011504	06/27/11 18:14	MJH	TAL NSH
Total	Prep	EPA 5035	RE1	0.986	11F7149_P	06/14/11 12:00	AAN	TAL NSH
Total	Analysis	SW846 8260B	RE1	50.0	U011573	06/28/11 17:06	MJH	TAL NSH
Total	Prep	EPA 3550C	RE1	0.995	11F5035_P	06/26/11 13:35	JJR	TAL NSH
Total	Analysis	SW846 8270D	RE1	5.00	11F5035	06/28/11 11:58	BES	TAL NSH
Total	Prep	% Solids		1.00	11F6205_P	06/28/11 16:00	RRS	TAL NSH
Total	Analysis	SW-846		1.00	11F6205	06/29/11 11:43	RRS	TAL NSH
Total	Analysis	SW846 8270D		1.00	11F5035	06/28/11 00:44		TAL NSH

Client Sample ID: 381 Aspen

Date Collected: 06/15/11 12:30

Date Received: 06/18/11 09:10

Lab Sample ID: NUF3059-02

Matrix: Soil

Percent Solids: 83.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 5035	RE1	0.952	11F7149_P	06/15/11 12:30	AAN	TAL NSH
Total	Analysis	SW846 8260B	RE1	1.00	U011573	06/28/11 15:31	MJH	TAL NSH
Total	Prep	EPA 3550C		0.973	11F5035_P	06/26/11 13:35	JJR	TAL NSH
Total	Analysis	SW846 8270D		1.00	11F5035	06/28/11 01:45	BES	TAL NSH
Total	Prep	% Solids		1.00	11F6205_P	06/28/11 16:00	RRS	TAL NSH
Total	Analysis	SW-846		1.00	11F6205	06/29/11 11:43	RRS	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Method Summary

Client: EEG - Small Business Group, Inc. (2449)

Method Description

General Chemistry Parameters

Volatile Organic Compounds by EPA Method 8260B

Polyaromatic Hydrocarbons by EPA 8270D

Project/Site: [none]

Method

SW-846

SW846 8260B

SW846 8270D

TestAmerica Job ID: NUF3059

TAL NSH

Protocol	Laboratory
	TAL NSH

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

1

2

3

4

7

8

9

Certification Summary

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF3059

		5
		6
		7
		8
		9
	1	10

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Nashville	A2LA	ISO/IEC 17025		0453.07
estAmerica Nashville	A2LA	WY UST		453.07
estAmerica Nashville	AIHA	IHLAP		100790
estAmerica Nashville	Alabama	State Program	4	41150
estAmerica Nashville	Alaska	Alaska UST	10	UST-087
estAmerica Nashville	Arizona	State Program	9	AZ0473
estAmerica Nashville	Arkansas	State Program	6	88-0737
estAmerica Nashville	CALA	CALA		3744
estAmerica Nashville	California	NELAC	9	1168CA
estAmerica Nashville	Colorado	State Program	8	N/A
estAmerica Nashville	Connecticut	State Program	1	PH-0220
estAmerica Nashville	Florida	NELAC	4	E87358
estAmerica Nashville	Illinois	NELAC	5	200010
estAmerica Nashville	lowa	State Program	7	131
estAmerica Nashville	Kansas	NELAC	7	E-10229
estAmerica Nashville	Kentucky	Kentucky UST	4	19
estAmerica Nashville	Kentucky	State Program	4	90038
estAmerica Nashville	Louisiana	NELAC	6	LA100011
estAmerica Nashville	Louisiana	NELAC	6	30613
estAmerica Nashville	Maryland	State Program	3	316
estAmerica Nashville	Massachusetts	State Program	1	M-TN032
estAmerica Nashville	Minnesota	NELAC	5	047-999-345
estAmerica Nashville	Mississippi	State Program	4	N/A
estAmerica Nashville	Montana	MT DEQ UST	8	NA
estAmerica Nashville	Nevada	State Program	9	TN00032
estAmerica Nashville	New Hampshire	NELAC	1	2963
estAmerica Nashville	New Jersey	NELAC	2	TN965
estAmerica Nashville	New York	NELAC	2	11342
estAmerica Nashville	North Carolina	North Carolina DENR	4	387
estAmerica Nashville	North Dakota	State Program	8	R-146
estAmerica Nashville	Ohio	OVAP	5	CL0033
estAmerica Nashville	Oklahoma	State Program	6	9412
estAmerica Nashville	Oregon	NELAC	10	TN200001
estAmerica Nashville	Pennsylvania	NELAC	3	68-00585
estAmerica Nashville	Rhode Island	State Program	1	LAO00268
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	Tennessee	State Program	4	2008
estAmerica Nashville	Texas	NELAC	6	T104704077-09-TX
estAmerica Nashville	USDA	USDA	100	S-48469
estAmerica Nashville	Utah	NELAC	8	TAN
estAmerica Nashville	Virginia	NELAC Secondary AB	3	460152
estAmerica Nashville	Virginia	State Program	3	00323
estAmerica Nashville	Washington	State Program	10	C789
estAmerica Nashville	West Virginia	West Virginia DEP	3	219
estAmerica Nashville	Wisconsin	State Program	5	998020430

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Relinguished by:	Special Instructions:	NUF3059 07/05/11 23:59 Sample ID / Description 3 19 A シクモル	Client Name/Account #: EEG - SBG # 2449 Address: 10179 Highway 78 City/State/Zip: Ladson, SC 29456 Project Manager: Tom McElwee ema Telephone Number: 843,412,2087 Sampler Name: (Print)
6/17/11 K		Date Sampled Time Sampled	Name/Account #: EEG - SBG # 2449 Address: 10179 Highway 78 City/State/Zip: Ladson, SC 29456 City/State/Zip: Ladson, SC 29456 Project Manager: Tom McElwee email: moelwee@eeginc.net
Time Received by Time Received by TestAmerica		No. of Containers Shipped Grab Composite Field Filtered Ice HNO, (Red Label)	
Method of Shipment:		NaOH (Orange Label)	Free: 800-765-09 Fax: 615-726-34 43) & Z;
Date Time		Wastewater Drinking Water Sludge Soil Other (specify):	646/
	Laboratory Comments:	> BTEX + Napth - 82606 > PAH - 8270D	methods, is this we regulatory purpose State: SC PO#: / [2 ~ 2] soct ID: Laurel Bay Housin
teadspace?			conducted for conducted for co-Monitoring?
≺		RUSH TAT (Pre-Schedule)	Yes No

ATTACHMENT A

UST Certificate of Disposal

CONTRACTOR

Small Business Group, Inc. 10179 Highway 78 Ladson, SC 29456

TEL (843) 879-0403 FAX (843) 879-0401

TANK ID & LOCATION

UST 381 Aspen; 381 Aspen Street, Laurel Bay Housing Area, MCAS Beaufort, S.C.

DISPOSAL LOCATION

Coastal Auto Salvage Co., Inc. 130 Laurel Bay Road Beaufort, S.C. 29906

TYPE OF TANK	SIZE (GAL)
Steel	280

CLEANING/DISPOSAL METHOD

The tank and piping were unearthed, cut open, cleaned with a pressure washer, cut into sections, and recycled.

DISPOSAL CERTIFICATION

I certify that the above tank, piping and equipment has been properly cleaned and disposed of.

 $\frac{7.2.62e0}{\text{(Name)}} \frac{1}{7/25/11}$

Appendix C Regulatory Correspondence

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

July 1, 2015

Commanding Officer
Attention: NREAO Mr. William A. Drawdy
United State Marine Corps Air Station
Post Office Box 55001
Beaufort, SC 29904-5001

RE: No Further Action

Laurel Bay Underground Storage Tank Assessment Reports for:

See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the referenced Underground Storage Tanks (USTs) Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties, and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg

Department of Defense Corrective Action Section

Bureau of Land and Waste Management

South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email)

Craig Ehde (via email) Bryan Beck (via email)

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

Attachment to: Krieg to Drawdy

Subject: NFA
Dated 7/1/2015

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks)

111 Birch 363 Aspen 123 Banyan 364 Aspen 131 Banyan 366 Aspen 134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 201 Balsam 420 Elderberry 202 Balsam 424 Elderberry 203 Balsam 452 Elderberry 204 Balsam 452 Elderberry 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 487 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 313 Ash 628 Dahlia 337	111 Direct	262 Asman
131 Banyan 366 Aspen 134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 200 Balsam 410 Elderberry 200 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 313 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 1 641 Dahlia		
134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 225 Beech Tank 2 513 Laurel Bay 252 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 313 Ash 612 Dahlia 314 Ash 628 Dahlia 315 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2		1
145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 452 Elderberry 210 Balsam 460 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 251 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia <td></td> <td>1</td>		1
150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 422 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	<u> </u>	
153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	•	
154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 203 Balsam 420 Elderberry 208 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia		1
155 Laurel Bay		
200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 208 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia		ž
202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	v	ž
203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia		J
208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	202 Balsam	420 Elderberry
210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	203 Balsam	424 Elderberry
211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	208 Balsam	435 Elderberry Tank 3
220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	210 Balsam	452 Elderberry
222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 337 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	211 Balsam	460 Elderberry
223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	220 Cypress	465 Dogwood
252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	222 Cypress	477 Laurel Bay
271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	223 Cypress	487Laurel Bay
271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	252 Beech Tank 2	513 Laurel Bay
284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	271 Beech Tank 1	519 Laurel Bay
284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	271 Beech Tank 2	524 Laurel Bay
308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	284 Birch Tank 1	535 Laurel Bay
311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	284 Birch Tank 2	553 Dahlia
312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	308 Ash	590 Aster
317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	311 Ash	591 Aster
318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	312 Ash	610 Dahlia
337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	317 Ash	612 Dahlia
351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	318 Ash	628 Dahlia
351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	337 Ash	636 Dahlia
355 Ash Tank 1 641 Dahlia	351 Ash Tank 1	637 Dahlia Tank 1
355 Ash Tank 1 641 Dahlia	351 Ash Tank 2	637 Dahlia Tank 2
355 Ash Tank 2 642 Dahlia Tank 1	355 Ash Tank 2	642 Dahlia Tank 1
360 Aspen 642 Dahlia Tank 2	360 Aspen	

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

655 Camellia	920 Albacore
662 Camellia	922 Barracuda Tank 1
683 Camellia	922 Barracuda Tank 2
684 Camellia	924 Albacore
689 Abelia	925 Albacore
694 Abelia	926 Albacore
695 Abelia	930 Albacore
741 Blue Bell	931 Albacore
742 Blue Bell	933 Albacore
755 Althea	936 Albacore
757 Althea	938 Albacore
776 Laurel Bay	939 Albacore
777 Azalea	940 Albacore
779 Laurel Bay	1010 Foxglove
781 Laurel Bay	1066 Gardenia
802 Azalea	1068 Gardenia
816 Azalea	1071 Heather Tank 2
822 Azalea	1100 Iris Tank 2
823 Azalea	1128 Iris
825 Azalea	1178 Bobwhite
828 Azalea	1204 Cardinal
837 Azalea	1208 Cardinal
851 Dolphin	1209 Cardinal
856 Dolphin	1210 Cardinal
857 Dolphin	1215 Cardinal
861 Dolphin	1216 Cardinal
864 Dolphin	1217 Cardinal Tank 1
868 Dolphin	1217 Cardinal Tank 2
872 Dolphin	1233 Dove
879 Cobia	1244 Dove
886 Cobia	1250 Dove
888 Cobia	1252 Dove
889 Cobia	1254 Dove
901 Barracuda	1256 Dove
902 Barracuda	1258 Dove
903 Barracuda	1263 Dove
904 Barracuda	1269 Dove
909 Barracuda	1276 Dove
910 Barracuda	1283 Dove
914 Barracuda	1285 Dove
915 Barracuda	1288 Eagle

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

1296 Eagle	1330 Albatross
1307 Eagle	1331 Albatross
1321 Albatross	1333 Albatross
1322 Albatross	1334 Albatross
1327 Albatross	1335 Albatross
1328 Albatross	